科研工作
1997年8月-至今:北京大学第三医院/医学部病理系,教授。
2004年10月-至今:北京大学第三医院/医学部病理系,主任医师,系科研副主任;
2008年10月-至今:北京大学第三医院/医学部病理系,系常务及科研副主任;
先后承担过国家自然科学基金项目、教育部、卫生部、北京市科委重点项目、北京市自然科学基金、国家“十五攻关”子课题等多项基金。目前承担国家自然科学基金2项(面上项目),科技部重大仪器基金1项(子课题)。
主要成果:1、细胞微管与肿瘤发生及与癌生物学的关系:1)中心体异常与肿瘤发生机制:证明人端粒酶转录活化因子TEIF(telomerase transcriptional elements-interacting factor, GenBank: Accession No.AF297709)调节中心体功能,与肿瘤发生过程中心体扩增关系密切,并与生长因子异常激活有关。部分结果已经发表于《Oncogene》、《BBA》杂志,并作为研究亮点为Nature-China所介绍;2)乙酰化酶NAT10(hALP,human N-acetyltransferase-like protein, GenBank: Accession No.AF496535)通过乙酰化中间纺锤体微管蛋白体而调节细胞胞质分裂。尤其最近证明NAT10调节结肠癌细胞骨架而促进癌细胞转移。部分结果已经发表于《Clin Cancer Res》、《Exp Cell Res》杂志;2、乳腺癌分子病理学研究:证明了AKT激活与HER2基因扩增有关联; AKT可作用于细胞骨架调节因子Girdin而促进乳腺癌生长、自噬、及转移。尤其最近证明Bmi1癌基因受ER转录调控,为其重要的靶基因,并且与p16活性相关,具有重要的临床意义,为ER阳性乳腺癌的治疗提供了新线索;3、端粒-端粒酶与肿瘤的研究:1)端粒短缩和端粒酶激活普遍存在于间叶肉瘤,端粒长度可能反映肉瘤的恶性度;短小端粒可能更易引起肉瘤细胞基因组的不稳定性。证明端粒酶的活化与细胞癌变和癌生物学行为密切相关,端粒酶的检测可为肿瘤诊断的新指标。抑制端粒酶活性可显著降低癌细胞的生长增殖能力、成瘤性及异型性。本研究获得2001年北京市科技进步三等奖和2003年度山西省科技进步二等奖;2)人端粒酶单克隆抗体及重组单域抗体研制;3)人端粒酶基因转录调控基因分离:COUP-TFII、未知功能的新基因NAT10及TEIF。
学术兼职
卫计委病理质量控制委员会-中国抗癌协会病理分会-分子病理委员会委员
国家自然科学基金、国家留学基金、博士后基金,福建省、山东省自然科学基金评审专家;
获奖情况
2010年中华医学科技奖二等奖(顾江、邓宏魁、王月丹、 高子芬、宫恩聪、张波等):新发传染病的分子病理学和免疫学发病机制研究;
2003年度山西省科技进步二等奖(卫建平,张波等):端粒酶hTR基因在人肿瘤组织表达研究;
2001年度北京市科技进步三等奖(张波,苑昕,应建明,卫建平,侯琳):端粒酶基因在人肿瘤组织表达研究;
1996年度卫生部科技进步一等奖(吴秉铨,郑杰,方伟岗,张波等):癌侵袭、转移机理及影响因素。
著作与译著
1.廖松林主编。《诊断病理学手册》 病理诊断技术。人民卫生出版社。1996年3月;
2. 刘彤华主编。《诊断病理学》 脾脏疾病,人民卫生出版社。2012年3月;
近年发表的主要有关论著(* 责任作者):
1. Zhang H, Hou W, Wang H, Liu H, Jia X, Zheng X, Zou Y, Li X, Hou L, McNutt MA and Zhang B*. GSK-3β-regulated N-acetyltransferase 10 is involved in colorectal cancer invasion. Clin Cancer Res. 2014, in press.
2. Zhao J, Zou Y, Liu H, Wang H, Zhang H, Hou W, Li X, Jia X, Zhang J, Hou L, Zhang B*. TEIF associated centrosome activity is regulated by EGF/PI3K/Akt signaling. Biochimica et Biophysica Acta 1843 (2014) 1851–1864.
3. Wang H, Liu H, Li X, Zhao J, Zhang H, Mao J, Zou Y, Zhang H, Zhang S, Hou W, Hou L, McNutt MA and Zhang B*. Estrogen receptor α-coupled Bmi1 regulation pathway in breast cancer and its clinical implications. BMC Cancer 2014, 14:122.
4. Hsu CC, Chen CH, Hsu TI, Hung JJ, Ko JL, Zhang B, Lee YC, Chen HK, Chang WC, and Lin DY. The 58-kDa microspherule protein (MSP58) represses human telomerase reverse transcriptase (hTERT) gene expression and cell proliferation by interacting with telomerase transcriptional element-interacting factor (TEIF). BBA - Mol Cell Res, 2013, 1843(3): 565-579.
5. Jiang P, Cui S, Ren Y, Mao J, Liu H, Tian Y, Liu Y, Du J, Hou L and Zhang B*. Girdin correlated with autophagy in invasive ductal breast carcinomas. Tumori, 2013, 99: 542-546. 6. Wang J, Wang H, Hou W, Liu H, Zou Y, Zhang H, Hou L, McNutt MA and Zhang B* . Subnuclear distribution of SSX regulates its function. Mol Cell Biochem. DOI 10.1007/s11010-013-1684-9. 2013.
7. Chi Y,Zhao J, Cui S, Jiang P, Wang H, Zhang H, Mao J, Liu H, Hou L, Zhang B* The level of phosphorylated Akt predominantly reflects the expressive status of CerbB2 in invasive breast cancer. Histol Histopathol. 2013, 28: 655-661.
8. Mao JZ, Jiang P, Cui SP, Ren YL, Zhao J, Yin XH, Enomoto A, Liu HJ, Hou L, Takahashi M, Zhang B*. Girdin locates in centrosome and midbody and plays an important role in cell division. Cancer Sci.2012, 103: 1780-1787.
9. Ling Y, Jiang P, Cui SP, Ren YL, Zhu SN, Yang JP, Du J, Zhang Y, Liu JY, Zhang B*. Clinical implications for Girdin protein expression in breast cancer. Cancer Investigation, 2011, 29:405–410.
10. Gong Y, Sun Y, Sun Q, Hou L, Liu H, Shen Q, Ling Y, Chi Y and Zhang B*. Localization of TEIF in the centrosome and its functional association with centrosome amplification in DNA damage, telomere dysfunction and human cancers. Oncogene. 2009, 28: 1549–1560.
11. Sun Y, Sun Q, Gong Y, Wang J, Hou L, Shen Q, Ling Y, Chi Y and Zhang B*. A cluster of polypyrimidine tracts is involved in the transcription regulation of telomerase transcriptional elements-interacting factor. Mol. Cell Biochem. 2009, 327: 65-73.
12. Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, Gong Y, Hou L and Zhang B*. NAT10, a nucleolar protein, localizes to midbody and regulates cytokinesis and acetylation of microtubules. Exp. Cell Res. 2009, 315: 1653-1667.
13. Liu H, Ling Y, Gong Y, Sun Y, Hou L and Zhang B*. DNA damage induces N-acetyltransferase NAT10 gene expression through transcriptional activation. Mol Cell Biochem, 2007, 300: 249-258.
14. Ye J, Zhang B, Xu J, Chang Q, McNutt MA, Korteweg C, Gong E, Gu J. Molecular Pathology in the Lungs of Severe Acute Respiratory Syndrome Patients. Am J Pathol. 2007, 170: 538-545
15. Gu J, Xie Z, Gao Z, Liu J, Korteweg C, Ye J, Lau LT, Lu J, Gao Z, Zhang B, McNutt MA, Lu M, Anderson VM, Gong E, Yu AC, Lipkin WI. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet 2007, 370: 1137-45
16. Li T, Zhang B, Ye Y, Yin H. Immunohistochemical and genetic analysis of Chinese nasal natural killer/T-cell lymphomas. Human Pathol. 2006, 37, 54-60.
17. Ye Y, Li T, Zhang B, Guo Z. Amplification and specific expression of T-bet gene in nasal NK/T-cell lymphoma. Leukemia & Lymphoma. 2007, 48: 168-173.
18. Zhao Y, Zheng J, Ling Y, Hou L, Zhang B*. Transcriptional upregulation of DNA polymerase βby TEIF. Biochem Biophys Res Commun. 2005, 333: 908–916.
19. Tang Z, Zhao Y, Mei F, Yang S, Li X, Lv J, Hou L and Zhang B*. Molecular cloning and characterization of a human gene involved in transcriptional regulation of hTERT. Biochem Biophys Res Commun. 2004, 324: 1324-1333.
20. Wang Q, Bai Z, Li X, Hou L and Zhang B*. The evidences of human Orphan Receptor COUP-TFII inhibiting telomerase activity through decreasing hTERT transcription. Cancer Lett. 2004, 214: 81-90.
21. Huang M, Zhang H, Liu C, Hou L, Zhang B*. Development of single-domain recombinant antibodies to reverse transcriptase domain of human hTERT. Hybridoma and Hybridomics. 2004, 23(4). 255-290.
22. Lv J, Liu H, Wang Q, Tang Z, Hou L and Zhang B*. Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Biochem Biophys Res Commun. 2003, 311: 506-513.